Clathrate Inclusion Compounds of Bis(isothiocyanato)tetrakis(4-methylpyridine)nickel(II).

III.* Bis(isothiocyanato)tetrakis(4-methylpyridine)nickel(II)-1-Methylnaphthalene (1:2) \dagger

By Janusz Lipkowski
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
and Paolo Sgarabotto and Giovanni D. Andreetti
Centro di Studio per la Strutturistica Diffrattometrica del Consiglio Nazionale delle Ricerche, via M. d'Azeglio 85, 43-100 Parma, Italy

(Received 12 March 1981; accepted 24 June 1981)

Abstract

The structure of $\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)_{4}(\mathrm{NCS})_{2} .2\left(1-\mathrm{CH}_{3} \mathrm{C}_{10} \mathrm{H}_{7}\right)$ was determined by X-ray diffraction and refined to $R=$ 0.069 for 5351 observed reflections. Discrete, asymmetric $\mathrm{Ni}(4 \text {-methylpyridine })_{4}(\mathrm{NCS})_{2}$ molecules form layers of the host structure. The NCS groups are nearly perpendicular to these layers and subdivide the interlayer space into a cage-like structure. There are two symmetrically independent guest molecules per molecule of the host complex. Crystal data: $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6}$ $\mathrm{NiS}_{2} \cdot 2 \mathrm{C}_{11} \mathrm{H}_{10}, M_{r}=831 \cdot 8$, is monoclinic, space group $P 2{ }_{1} / c$, with $a=11.528$ (12), $b=11.890$ (6), $c=$ 32.852 (12) $\AA, \beta-94.28(6)^{\circ}, V=4490 \AA^{3}, Z=4$, $D_{c}=1.230 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=1752, \mu(\mathrm{Cu} K a)=1.67$ mm^{-1}.

Introduction

$\mathrm{Ni}(4-\mathrm{MePy})_{4}(\mathrm{NCS})_{2} \ddagger$ when kept in contact with methanolic solutions of mixtures of 1- and 2-methylnaphthalene ($1-$ and $2-\mathrm{Me} N$) forms a clathrate-type solid which is enriched with the 1 -isomer rather than the 2 -isomer (Schaeffer, Dorsey, Skinner \& Christian, 1957). Lipkowski, Bylina, Duszczyk, Leṡniak \& Sybilska (1974) have found that at least two different crystalline products form in the above process: the $2-\mathrm{Me} N$ and $1-\mathrm{Me} N$ clathrates, the latter being less soluble than the former. In Part I of this study (Lipkowski, Sgarabotto \& Andreetti, 1980) we reported the structures of the $2-\mathrm{Me} N$ and $2-\mathrm{Br} N$ clathrates. The present paper reports the crystal structure of the more stable $1-\mathrm{Me} N$ clathrate. Knowledge of this

[^0]structure is necessary for the interpretation of data not only on selective clathration but also on guest-host interaction in the $\mathrm{Ni}(4-\mathrm{MePy})_{4}(\mathrm{NCS})_{2}$ clathrates (Guarino, Occhiucci, Possagno \& Bassanelli, 1977).

Experimental

Single crystals were synthesized as described by Kemula, Lipkowski \& Sybilska (1974). When the crystals were removed from solution, they dried with significant loss of the guest component ($1-\mathrm{Me} N$) and deterioration of the crystal structure. To avoid this, the crystals, together with small amounts of mother liquor, were mounted inside Lindemann-glass capillaries.

A crystal $0.6 \times 0.3 \times 0.2 \mathrm{~mm}$ was mounted along a. Space group and preliminary cell parameters were determined from Weissenberg photographs. Accurate cell parameters were determined from 15 reflections with θ between 19 and 41° by least squares. Intensities up to $\theta=70^{\circ}$ were collected on a computer-controlled Siemens AED diffractometer with filtered $\mathrm{Cu} K \alpha$ radiation. The $\omega-2 \theta$ and five-points techniques (Hoppe, 1969) were used. 7748 unique reflections were measured. Of these, 5351 having $I \geq 2 \sigma(I)$ were classified as observed and used in the analysis. Lorentz and polarization corrections were applied but absorption was ignored.
The structure was solved from three-dimensional Patterson and electron-density syntheses, and refined by blocked full-matrix least squares using SHELX (Sheldrick, 1975). H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=1.08 \AA$) 'riding' on their C atoms. Anisotropic thermal parameters were refined for all non- H atoms except for the methyl C atoms. Siteoccupation factors for the two independent $1-\mathrm{Me} N$ molecules refined to 0.965 (5) and 0.999 (5) for molecules A and B respectively. The final $R=0.069$

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors (Hamilton, 1959) with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Host $\mathrm{Ni}(4-\mathrm{MePy})_{4}(\mathrm{NCS})_{2}$				
Ni	1259 (1)	1775 (1)	1244 (1)	$4 \cdot 6$ (1)
N (1)	985 (4)	1682 (3)	616 (1)	$5 \cdot 6$ (2)
$\mathrm{N}(2)$	1592 (4)	1928 (3)	1873 (1)	5.4 (2)
N(3)	484 (3)	3412 (3)	1230 (1)	4.9 (2)
N(4)	1961 (3)	114 (3)	1260 (1)	$5 \cdot 1$ (2)
N (5)	2949 (3)	2464 (3)	1159 (1)	$5 \cdot 1$ (2)
N(6)	-389 (4)	1049 (3)	1321 (1)	4.9 (2)
S(1)	1123 (3)	1755 (2)	-220 (1)	9.8 (1)
S(2)	2243 (2)	2077 (1)	2702 (1)	7.2 (1)
C(1)	1032 (4)	1712 (4)	267 (1)	4.9 (2)
C(2)	1863 (4)	1985 (3)	2211 (1)	4.7 (2)
$\mathrm{C}(3)$	688 (4)	4173 (4)	943 (1)	$5 \cdot 2$ (2)
C(4)	188 (5)	5229 (4)	922 (1)	5.7 (2)
C(5)	-600 (4)	5531 (4)	1204 (1)	$5 \cdot 2$ (2)
C(6)	-819 (4)	4733 (4)	1496 (1)	$5 \cdot 3$ (2)
C (7)	-265 (4)	3711 (4)	1500 (1)	$5 \cdot 2$ (2)
C (8)	-1163 (5)	6661 (5)	1196 (2)	7.8 (2)
C(9)	1494 (5)	-703 (4)	1017 (1)	5.5 (2)
$\mathrm{C}(10)$	1856 (5)	-1801 (4)	1041 (2)	$6 \cdot 0$ (3)
C(11)	2762 (5)	-2116 (4)	1318 (2)	5.9 (3)
C (12)	3260 (5)	-1253 (5)	1571 (2)	5.8 (2)
C(13)	2842 (4)	-177 (4)	1533 (1)	5.4 (2)
C(14)	3199 (5)	-3298 (4)	1357 (2)	7.8 (2)
C(15)	3618 (5)	2054 (4)	878 (2)	5.7 (2)
C (16)	4701 (5)	2467 (5)	815 (2)	$6 \cdot 3$ (3)
C(17)	5145 (5)	3340 (5)	1052 (2)	$6 \cdot 2$ (3)
C (18)	4459 (5)	3776 (5)	1344 (2)	6.3 (3)
C(19)	3394 (5)	3326 (4)	1385 (2)	5.7 (3)
C(20)	6370 (5)	3829 (6)	995 (2)	8.5 (2)
C (21)	-558 (5)	335 (4)	1628 (1)	$5 \cdot 8$ (2)
C(22)	-1582 (5)	-206 (5)	1674 (2)	6.4 (3)
C(23)	-2506 (5)	-56 (5)	1391 (2)	$6 \cdot 2$ (3)
C(24)	-2343 (5)	674 (6)	1073 (2)	7.0 (3)
C(25)	-1300 (5)	1181 (5)	1044 (2)	6.3 (3)
C(26)	-3645 (6)	-656 (6)	1432 (2)	9.0 (2)

Guest 1-MeN, molecule A

C(27)	$6438(6)$	$1015(6)$	$2456(2)$	$8 \cdot 2(4)$
$\mathrm{C}(28)$	$6955(6)$	$34(5)$	$2609(2)$	$7 \cdot 9(3)$
$\mathrm{C}(29)$	$8151(7)$	$65(5)$	$2750(2)$	$7.9(3)$
$\mathrm{C}(30)$	$8771(7)$	$1022(5)$	$2751(2)$	$8 \cdot 2(3)$
$\mathrm{C}(31)$	$8939(6)$	$3084(5)$	$2623(2)$	$7.4(3)$
$\mathrm{C}(32)$	$8373(7)$	$4008(5)$	$2486(2)$	$8.2(4)$
$\mathrm{C}(33)$	$7196(7)$	$4016(5)$	$2334(2)$	$7.8(3)$
$\mathrm{C}(34)$	$6592(7)$	$3105(6)$	$2318(2)$	$8.8(4)$
$\mathrm{C}(35)$	$7122(5)$	$2025(4)$	$2470(1)$	$6.3(2)$
$\mathrm{C}(36)$	$8255(6)$	$2044(5)$	$2616(2)$	$7.2(3)$
$\mathrm{C}(37)$	$5210(7)$	$1031(8)$	$2295(3)$	$12 \cdot 1(5)$

Guest 1-MeN, molecule B

C(38)	$4566(7)$	$-2343(8)$	$350(2)$	$9.6(5)$
$\mathrm{C}(39)$	$4341(8)$	$-1248(8)$	$288(2)$	$9.7(5)$
$\mathrm{C}(40)$	$3275(9)$	$-812(7)$	$126(2)$	$10.1(4)$
$\mathrm{C}(41)$	$2401(7)$	$-1584(7)$	$10(2)$	$9.4(4)$
$\mathrm{C}(42)$	$1682(6)$	$-3548(8)$	$-56(2)$	$8.7(3)$
$\mathrm{C}(43)$	$1896(7)$	$-4654(7)$	$-2(2)$	$8.7(3)$
$\mathrm{C}(44)$	$2900(9)$	$-5033(6)$	$169(2)$	$8.8(4)$
$\mathrm{C}(45)$	$3784(7)$	$-4354(7)$	$283(2)$	$9.0(4)$
$\mathrm{C}(46)$	$3668(5)$	$-3159(6)$	$233(2)$	$7.4(3)$
$\mathrm{C}(47)$	$2599(7)$	$-2747(6)$	$63(1)$	$8.0(3)$
$\mathrm{C}(48)$	$5714(7)$	$-2766(9)$	$524(3)$	$12.8(6)$

and $R_{w}=0.079$. The weighting scheme was $w=$ $1 /\left[\sigma^{2}(F)+0 \cdot 005 F^{2}\right]$. Atomic parameters are listed in Table 1.*

Results and discussion

Molecular structure

Bond lengths and angles with e.s.d.'s are given in Table 2. The conformation of the host complex molecule is shown in Fig. 1 and the guest $1-\mathrm{Me} N$ molecules in Fig. 2.

* Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and results of rigid-body thermal-motion analysis have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36259 (39 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. The $\mathrm{Ni}(4-\mathrm{MePy})_{4}(\mathrm{NCS})_{2}$ host molecule: (a) atom numbering, and (b) ORTEP (Johnson, 1965) stereoview. Ellipsoids of 50% probability are used for non- H atoms; the H atoms are indicated by spheres of $0 \cdot 1 \AA$ radii.

Table 2. Bond distances (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

The values corrected for libration are given in square brackets.

Host complex					
$\mathrm{Ni}-\mathrm{N}(1) \quad 2.067$ (4)		$\mathrm{N}(1)-\mathrm{C}(1) \quad 1 \cdot 152$ (6)			
$\mathrm{Ni}-\mathrm{N}(2) \quad 2.081$ (4)		$\mathrm{N}(2)-\mathrm{C}(2) \quad 1.133$ (6)			
$\mathrm{C}(1)-\mathrm{S}(1) \quad 1.612$ (5)					
$\mathrm{C}(2)-\mathrm{S}(2) \quad 1.643$ (5)					
$\mathrm{Ni}-\mathrm{N}(3) \quad 2 \cdot 141$ (4)		$\mathrm{Ni}-\mathrm{N}(4) \quad 2 \cdot 133$ (4)			
$\mathrm{N}(3)-\mathrm{C}(3) \quad 1.340$ (6)	[1.352]	$\mathrm{N}(4)-\mathrm{C}(9) \quad 1.344$ (6)	[1.353]		
$\mathrm{N}(3)-\mathrm{C}(7) \quad 1.332$ (6)	[1.341]	$\mathrm{N}(4)-\mathrm{C}(13) \quad 1.349$ (6)	[1.355]		
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.381$ (7)	[1.388)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1.371$ (7)	[1.375]		
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1 \cdot 392$ (7)	[1.403\|	$\mathrm{C}(10)-\mathrm{C}(11) \quad 1.385$ (8)	[1.394]		
$\mathrm{C}(5)-\mathrm{C}(6) \quad 1 \cdot 386$ (7)	[1.398]	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.415$ (7)	\|1.425		
$\mathrm{C}(5)-\mathrm{C}(8) \quad 1.491$ (8)	[1.499]	$\mathrm{C}(11)-\mathrm{C}(14) \quad 1.495$ (7)	\|1.500		
$\mathrm{C}(6)-\mathrm{C}(7) \quad 1.372$ (7)	\|1-379		$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.370$ (7)	\|1.374	
$\mathrm{Ni}-\mathrm{N}(5) \quad 2 \cdot 151$ (4)		$\mathrm{Ni}-\mathrm{N}(6) \quad 2 \cdot 119$ (4)			
$\mathrm{N}(5)-\mathrm{C}(15) \quad 1.338$ (7)	[1.346\|	$\mathrm{N}(6)-\mathrm{C}(21) \quad 1.344$ (6)	[1.358]		
$\mathrm{N}(5)-\mathrm{C}(19) \quad 1.345$ (6)	\|1.351]	$\mathrm{N}(6)-\mathrm{C}(25) \quad 1.346$ (6)	[1.364]		
$\mathrm{C}(15)-\mathrm{C}(16) \quad 1.372$ (8)	\|1.375)	$\mathrm{C}(21)-\mathrm{C}(22) \quad 1.363$ (8)	[1.367]		
$\mathrm{C}(16)-\mathrm{C}(17) \quad 1.373$ (8)	[1.380]	$\mathrm{C}(22)-\mathrm{C}(23) \quad 1.372$ (8)	[1.390\|		
$\mathrm{C}(17)-\mathrm{C}(18) \quad 1.388$ (8)	[1.397]	$\mathrm{C}(23)-\mathrm{C}(24) \quad 1.382$ (8)	[1.397]		
$\mathrm{C}(17)-\mathrm{C}(20) \quad 1.551$ (8)	[1.555]	$\mathrm{C}(23)-\mathrm{C}(26) \quad 1.509$ (9)	\|1.514		
$\mathrm{C}(18)-\mathrm{C}(19) \quad 1.355$ (8)	[1.358]	$\mathrm{C}(24)-\mathrm{C}(25) \quad 1.355$ (8)	\| 1 -359		
$\mathrm{Ni}-\mathrm{N}(1)-\mathrm{C}(1)$	167.6(4)	$\mathrm{Ni}-\mathrm{N}(2)-\mathrm{C}(2)$	174.5 (4)		
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{S}(1)$	179.0 (5)	$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{S}(2)$	179.3 (4)		
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(3)$	89.7 (1)	$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(4)$	$90 \cdot 3$ (1)		
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(5)$	87.9 (2)	$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(6)$	91.5 (2)		
$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	123.7 (5)	$\mathrm{N}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	123.3 (5)		
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.5 (5)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120.4 (5)		
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	116.5 (4)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$116 \cdot 3$ (5)		
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$120 \cdot 2$ (4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	119.9 (5)		
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(3)$	$123 \cdot 8$ (4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{N}(4)$	123.0(4)		
$\mathrm{C}(7)-\mathrm{N}(3)-\mathrm{C}(3)$	116.4 (4)	$\mathrm{C}(13)-\mathrm{N}(4)-\mathrm{C}(9)$	117.2 (4)		
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(8)$	121.6 (5)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(14)$	122.9 (5)		
$\mathrm{N}(5)-\mathrm{C}(15)-\mathrm{C}(16)$	123.4 (5)	$\mathrm{N}(6)-\mathrm{C}(21)-\mathrm{C}(22)$	123.8 (5)		
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.3 (5)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.0 (5)		
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	117.8 (5)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	116.8 (5)		
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	119.3 (5)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$120 \cdot 3$ (5)		
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{N}(5)$	123.8 (5)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{N}(6)$	123.4 (5)		
$\mathrm{C}(19)-\mathrm{N}(5)-\mathrm{C}(15)$	116.3 (4)	$\mathrm{C}(25)-\mathrm{N}(6)-\mathrm{C}(21)$	115.6(4)		
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(20)$	121.2 (5)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(26)$	121.0(5)		
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(3)-\mathrm{C}(3)$	-41(1)	$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(4)-\mathrm{C}(9)$	-40(1)		
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(5)-\mathrm{C}(15)$	-41(1)	$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(6)-\mathrm{C}(25)$	-30(1)		
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(3)$	92 (1)	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{Ni}-\mathrm{N}(3)$	-131 (1)		

Guest 1-MeN

Molecule A		Molecule B			
$\mathrm{C}(27)-\mathrm{C}(28) \quad 1 \cdot 387$ (9)	\|1.397		$\mathrm{C}(38)-\mathrm{C}(39) \quad 1.340$ (13)	\|1.351]	
$\mathrm{C}(27)-\mathrm{C}(35) \quad 1.435$ (9)	[1.445]	$\mathrm{C}(38)-\mathrm{C}(46) \quad 1.450$ (11)	\|1.459		
$\mathrm{C}(28)-\mathrm{C}(29) \quad 1.422$ (10)	\|1.437]	$\mathrm{C}(39)-\mathrm{C}(40) \quad 1.402$ (13)	\|1.415		
$\mathrm{C}(29)-\mathrm{C}(30) \quad 1.344$ (9)	\|1.352		$\mathrm{C}(40)-\mathrm{C}(41) \quad 1.395$ (12)	\| 1.404	
$\mathrm{C}(30)-\mathrm{C}(36) \quad 1.410$ (9)	\|1.420		$\mathrm{C}(41)-\mathrm{C}(47) \quad 1.410$ (11)	\|1.421	
$\mathrm{C}(31)-\mathrm{C}(36) \quad 1.466$ (9)	\| 1.475		$\mathrm{C}(42)-\mathrm{C}(47) \quad 1.455$ (10)	\|1.465	
$\mathrm{C}(31)-\mathrm{C}(32) \quad 1.338$ (9)	\|1.349		$\mathrm{C}(42)-\mathrm{C}(43) \quad 1.347$ (12)	\|1.358	
$\mathrm{C}(32)-\mathrm{C}(33) \quad 1.410(11)$	\|1.426		$\mathrm{C}(43)-\mathrm{C}(44) \quad 1.327(11)$	\| $1 \cdot 340 \mid$	
C(33)-C(34) 1.287(10)	\| 1.295		$\mathrm{C}(44)-\mathrm{C}(45) \quad 1.332(11)$	[1.341]	
$\mathrm{C}(34)-\mathrm{C}(35) \quad 1.492$ (9)	\|1.503		$\mathrm{C}(45)-\mathrm{C}(46) \quad 1.435(11)$	\|1.447	
$\mathrm{C}(35)-\mathrm{C}(36) \quad 1.358$ (9)	\|1.372		$\mathrm{C}(46)-\mathrm{C}(47) \quad 1.403$ (9)	\|1.416	
$\mathrm{C}(27)-\mathrm{C}(37) \quad 1.474$ (10)	[1.490\|	$\mathrm{C}(38)-\mathrm{C}(48) \quad 1.489$ (11)	[1.504]		
C(27)-C(28)-C(29)	118.4 (6)	$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	124.9 (8)		
C(28)-C(29)-C(30)	121.7 (6)	C(39)-C(40)-C(41)	117.1 (8)		
C(29)-C(30)-C(36)	$121 \cdot 1$ (7)	C(40)-C(41)-C(47)	120.3 (7)		
C(30)-C(36)-C(35)	118.0 (6)	C(41)-C(47)-C(46)	121.4 (7)		
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(27)$	122.5 (5)	$\mathrm{C}(47)-\mathrm{C}(46)-\mathrm{C}(38)$	117.4 (7)		
$\mathrm{C}(35)-\mathrm{C}(27)-\mathrm{C}(28)$	118.2 (6)	$\mathrm{C}(46)-\mathrm{C}(38)-\mathrm{C}(39)$	118.9 (7)		
C(31)-C(32)-C(33)	123.8 (6)	C(42)-C(43)-C(44)	122.2 (7)		
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	120.8 (6)	C(43)-C(44)-C(45)	$122 \cdot 6$ (8)		
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	120.3 (7)	C(44)--C(45)-C(46)	$120 \cdot 3$ (7)		
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	117.6 (5)	C(45)-C(46)-C(47)	117.6 (6)		
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(31)$	121.5 (5)	C(46)-C(47)-C(42)	118.5 (6)		
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	116.1 (6)	C(47)-C(42)-C(43)	118.8 (6)		
C(35)-C(27)-C(37)	120.7 (6)	$\mathrm{C}(46)-\mathrm{C}(38)-\mathrm{C}(48)$	118.2 (8)		

Fig. 2. An ORTEP plot of (a) 1-MeN molecule A and (b) 1-MeN molecule B guest molecules. Ellipsoids of 50% probability are used for C atoms; H atoms are represented by circles of $0.1 \AA$ radii. Numbers shown denote the numbering of the C and H atoms.

The host molecule is propeller shaped and its geometry differs significantly from that found in the tetragonal β-phase of $\mathrm{Ni}(4-\mathrm{MePy})_{4}(\mathrm{NCS})_{2}$ (Andreetti, Bocelli \& Sgarabotto, 1972; de Gil \& Kerr, 1977) or in triclinic clathrates of the complex (Lipkowski, Sgarabotto \& Andreetti, 1980). In the structures mentioned above, the $\mathrm{Ni}(4-\mathrm{MePy})_{4}(\mathrm{NCS})_{2}$ molecule adopts C_{2} and C_{i} symmetry respectively. In the clathrate described here the complex is asymmetric. The asymmetry is more pronounced than that of the complex in its non-clathrated ' a-phase' (Kerr \& Williams, 1977). In particular, the difference between the $\mathrm{Ni}-\mathrm{N}(5)$ and $\mathrm{Ni}-\mathrm{N}(6)$ distances $(0.032 \AA$) seems to be significant and the $\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(5)$ angle

Table 3. Comparison of $\mathrm{N}-\mathrm{C}$ and $\mathrm{Ni}-\mathrm{N}$ bond lengths and $\mathrm{Ni}-\mathrm{N}-\mathrm{C}$ bond angles in isothiocyanate ligands

Clathrate with (guest compound)	$\mathrm{Ni}-\mathrm{N}-\mathrm{C}(\mathrm{~S})$ $\left({ }^{\circ}\right)$	(A)	$\begin{gathered} \mathrm{N}-\mathrm{C} \\ (\AA) \end{gathered}$	$\underset{(\AA)}{\mathrm{C}-\mathrm{S}}$	Refer ence
1-MeN	167.6 (4)	2.066 (4)	1.151 (6)	1.614 (5)	(a)
	174.5 (4)	2.082 (4)	1.333 (6)	1.644 (5)	(a)
2-MeN	169.0 (4)	2.046 (2)	1.149(2)	1.624 (2)	(b)
$2-\mathrm{Br} N$	$170 \cdot 3$ (12)	2.029 (7)	1.144 (8)	1.610 (7)	(b)
Methanol	158.1 (6)	2.070 (7)	1.137 (9)	1.623 (10)	(c)
p-Xylene	163.0 (7)	2.061 (7)	1.135 (11)	1.617 (9)	(c)
m-Xylene	$165 \cdot 1$ (4)	2.068 (4)	$1 \cdot 134$ (6)	1.623 (5)	(c)
Nonclathrated	163.5 (5)	2.066 (4)	$1 \cdot 136$ (6)	1.629 (5)	(d)
' a -form'	156.7 (4)	2.070 (4)	1.128 (7)	1.639 (6)	(d)

References: (a) Present study; (b) Lipkowski et al. (1980); (c) Lipkowski et al. (1981); (d) Kerr \& Williams (1977).

Table 4. Least-squares planes and atomic deviations (\AA)

Atoms marked with asterisks were not included in the leastsquares calculations.			
(I) $1 \cdot 2114 X+0.8353 Y+32 \cdot 2400 Z=4 \cdot 3044$			
$\mathrm{N}(3)$	0.005 (3)	N(5)	-0.005 (3)
$\mathrm{N}(4)$	0.005 (3)	N(6)	-0.005 (3)
Ni^{*}	0.007		
(II) $10.5243 X+4.6568 Y-5.9966 Z=1.4057$			
$\mathrm{N}(1)$	0.045 (3)	$\mathrm{N}(3)$	-0.045 (3)
$\mathrm{N}(2)$	0.045 (3)	N(4)	-0.044 (3)
Ni^{*}	0.000		
(III) $-4.6 \mathrm{I} 43 X+10.8912 Y+0.0931 Z=1.3584$			
$\mathrm{N}(1)$	0.025 (3)	$\mathrm{N}(5)$	-0.025 (3)
N(2)	0.024 (3)	N(6)	-0.024 (3)
$\mathrm{Ni*}$	0.005		
(IV) $8 \cdot 1830 X+4 \cdot 3926 Y+17 \cdot 9065 Z=4 \cdot 0942$			
$\mathrm{N}(3)$	0.003 (3)	C(6)	-0.007 (3)
C(3)	-0.010 (4)	C (7)	$0 \cdot 005$ (4)
C(4)	0.008 (3)	C(8)*	0.022
C(5)	$0 \cdot 000$ (3)	$\mathrm{Ni}{ }^{*}$	-0.057

(V) $8 \cdot 1897 X+2 \cdot 2993 Y-23 \cdot 9105 Z=-1 \cdot 3771$

$\mathrm{N}(4)$	$-0.003(3)$	$\mathrm{C}(12)$	$0.003(4)$
$\mathrm{C}(9)$	$0.007(4)$	$\mathrm{C}(13)$	$-0.002(3)$
$\mathrm{C}(10)$	$-0.006(4)$	$\mathrm{C}(14)^{*}$	-0.006
$\mathrm{C}(11)$	$0.001(3)$	Ni^{*}	-0.158

N(5)	0.003 (3)	C(18)	0.001 (3)
C(15)	0.002 (4)	C(19)	0.004 (3)
$\mathrm{C}(16)$	-0.005 (3)	C(20)*	0.010
C(17)	0.004 (4)	Ni*	0.019
(VII) $-4.0814 X+9 \cdot 1082 Y+18.4440 Z=3.5417$			
N (6)	0.009 (4)	C(24)	0.008 (4)
C(21)	-0.006 (4)	C(25)	0.010 (4)
C(22)	$0 \cdot 004$ (4)	C(26)*	0.010
C(23)	-0.004 (3)	$\mathrm{Ni}{ }^{*}$	-0.144

(VIII) $-3.9800 X+2 \cdot 3205 Y+30 \cdot 9204 Z=5.2741$			
C(27)	-0.007 (5)	C(33)	0.011 (6)
$\mathrm{C}(28)$	0.033 (6)	C(34)	-0.010 (6)
C(29)	0.000 (6)	C(35)	-0.001 (5)
C(30)	-0.022 (5)	C(36)	0.004 (6)
$\mathrm{C}(31)$	-0.006 (4)	C(37)	-0.012 (7)
C(32)	$0 \cdot 010$ (6)		
(IX) $-4.6078 X+0.7110 Y+30.9456 Z=-1.1918$			
C(38)	0.004 (6)	C(44)	0.021 (6)
C(39)	-0.006 (6)	C(45)	0.014 (6)
C(40)	0.015 (5)	C(46)	-0.002 (5)
C(41)	0.004 (6)	C(47)	-0.006 (7)
C(42)	-0.009 (5)	C(48)	-0.016 (6)
C(43)	-0.019 (6)		

Table 4 (cont.)
Dihedral angles $\left({ }^{\circ}\right)$

(I)-(II)	$89.5(5)$	(I)-(IV)	$45.9(7)$
(I)-(III)	$90 \cdot 3(5)$	(I)-(V)	$54.3(7)$
(II)-(III)	$90 \cdot 2(5)$	(I)-(VI)	$48.9(6)$
(VIII)-(IX)	$8.4(18)$	(I)-(VII)	$56.7(7)$
(IV)-(VIII)	$67.8(10)$	(IV)-(IX)	$73.3(11)$
(V)-(VIII)	$34.0(10)$	(V)-(IX)	$27.0(13)$
(VI)-(VIII)	$68.6(10)$	(VI)-(IX)	$64.4(12)$
(VII)-(VIII)	$40 \cdot 2(12)$	(VII)-(IX)	$47.3(10)$

[87.9 (2) ${ }^{\circ}$] differs significantly from 90°. The angles at the thiocyanate N atoms are rather larger here [167.6 (4) and $174.5(4)^{\circ}$] than in the α-phase (156.7 and 163.5°). The conformation of the thiocyanate groups about the $\mathrm{Ni}-\mathrm{N}$ bonds is highly asymmetric, torsion angles $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(3)$ and $\mathrm{C}(2)-\mathrm{N}(2)-$ $\mathrm{Ni}-\mathrm{N}(3)$ being 92 (1) and -131 (1) ${ }^{\circ}$.

It seems clear, on the basis of the data listed in Table 3, that differences in the $\mathrm{Ni}-\mathrm{N}-\mathrm{C}(\mathbf{S})$ bond angles observed in $\mathrm{Ni}(4-\mathrm{MePy})_{4}(\mathrm{NCS})_{2}$ molecules in different crystal structures cannot be ascribed to any electronic effect and should be interpreted in terms of molecular packing. A similar conclusion has recently been drawn by Hartl \& Brüdgam (1980) from studies on $\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}(\mathrm{NCS})_{2}$ and its molecular adducts. It is thus reasonable to assume that both the conformation of the isothiocyanate groups about the $\mathrm{Ni}-\mathrm{N}(\mathrm{CS})$ bonds, and the $\mathrm{Ni}-\mathrm{N}-\mathrm{C}(\mathrm{S})$ bond angles reported herein are a result of crystal packing forces, a range of ca $150-180^{\circ}$ being permissible for $\mathrm{Ni}-\mathrm{N}-\mathrm{C}(\mathrm{S})$ bond angles (Müller, 1977).

The four N atoms of the MePy groups and Ni are coplanar (Table 4). As in the α phase, the pyridine rings are planar to within $0.01 \AA$ and the Ni atom deviates from these planes significantly. The dihedral angles between the pyridine rings and the $\mathrm{N}(3), \mathrm{N}(4), \mathrm{N}(5)$, N (6) plane range from 45.9 to 56.7°. These values are about 5° lower than the corresponding angles in the α phase and about 3° lower than in the β phase.

The conformation of the four MePy ligands about their $\mathrm{Ni}-\mathrm{N}$ coordination bonds is fairly close to the optimum geometry found for this system from nonbonded energy calculations (Lipkowski, 1981).

Thermal motion

The thermal motion of the $4-\mathrm{MePy}$ ligands and the $1-\mathrm{Me} N$ guest molecules has been analysed in terms of rigid-body motion (Schomaker \& Trueblood, 1968). The resulting corrections to bond lengths within the rigid groups are included in Table 2. The r.m.s. amplitudes of vibration of both $1-\mathrm{MeN}$ molecules are equal within the error limits. Libration is highly anisotropic. Translational motions have, for both guest molecules, r.m.s. amplitudes of about $0.32 \AA$ in

Fig. 3 The packing of the molecules viewed along [010].
directions not much different from \mathbf{a} and \mathbf{b} and significantly lower values, $0 \cdot 22 \AA$, in the direction close to c. Detailed results of the thermal-motion analysis of the $1-\mathrm{Me} N$ molecules have been deposited.*

Packing

The molecular packing, which is illustrated by a projection along [010] (Fig. 3), is of a layer-type. Discrete $\mathrm{Ni}(4-\mathrm{MePy})_{4}(\mathrm{NCS})_{2}$ molecules form layers perpendicular to \mathbf{c} at $z=\frac{1}{8}, \frac{3}{8}, \frac{5}{8}$ and $\frac{7}{8}$. Isothiocyanate groups penetrate the space between these layers and subdivide it into cavities. Asymmetric host $\mathrm{Ni}(4-$ $\mathrm{MePy}_{4}(\mathrm{NCS})_{2}$ molecules border two symmetrically independent layers of guest molecules. At $z=0$ and $\frac{1}{2}$ the layers consist of centrosymmetrically related guest molecules B, while at $z=\frac{1}{4}$ and $\frac{3}{4}$, molecules A are related by the 2 , symmetry.

The molecular packing differs greatly from that found in the $2-\mathrm{Me} N$ clathrate (Lipkowski, Sgarabotto \& Andreetti, 1980), although both involve a layer-like type of packing. Closest intermolecular contacts are given in Table 5.

Conclusion

As stated in the introduction the $1-\mathrm{Me} N$ clathrate is thermodynamically more stable than the $2-\mathrm{Me} N$ clathrate. However, comparison of molar volumes (676 $\times 10^{-6}$ and $650 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$ for the $1-\mathrm{Me} N$ and $2-\mathrm{Me} N$ clathrate respectively) indicates significantly more effective packing in the less stable crystalline phase. It seems that the reason for the above difference in thermodynamic stability (and thus the reason for clathration selectivity in this system) could be the difference in intramolecular, non-bonded energy of the host. In the $2-\mathrm{Me} N$ clathrate close packing is achieved

[^1]Table 5. Closest intermolecular contacts (\AA)

Host-host		$r_{1}+r_{2}{ }^{*}$
$\mathrm{S}(2) \cdots \mathrm{H}(\mathrm{C} 22)^{(8)}$	2.944 (4)	3.05
$\mathrm{H}(\mathrm{C} 4) \cdots \mathrm{H}(\mathrm{C} 10)^{(c)}$	2.431 (7)	$2 \cdot 40$
$\mathrm{H}(\mathrm{C} 8) \cdots \mathrm{H}\left(\mathrm{C}(10)^{(c)}\right.$	2.441 (7)	
Host-guest molecule A		
$\mathrm{S}(2) \cdots \mathrm{H}(\mathrm{C} 33)^{(e)}$	2.922 (5)	$3 \cdot 05$
$\mathrm{S}(2) \cdots \mathrm{H}(\mathrm{C} 32)^{(\text {e) }}$	3.023 (5)	
$\mathrm{S}(2) \cdots \mathrm{H}(\mathrm{C} 31)^{(b)}$	3.047 (5)	
$\mathrm{H}(\mathrm{C} 6) \cdots \mathrm{C}(32)^{(b)}$	2.756 (7)	$2 \cdot 90$
$\mathrm{H}(\mathrm{C} 26) \cdots \mathrm{C}(37)^{(b)}$	2.767 (7)	
$\mathrm{C}(2) \cdots \mathrm{H}(\mathrm{C} 29)^{(8)}$	2.795 (9)	
$\mathrm{C}(6) \cdots \mathrm{H}(\mathrm{C} 30)^{(8)}$	2.826 (8)	
$\mathrm{C}(7) \cdots \mathrm{H}(\mathrm{C} 29)^{(8)}$	2.864 (8)	
$\mathrm{H}(\mathrm{C} 6) \cdots \mathrm{C}(33)^{(6)}$	2.867 (8)	
$\mathrm{H}(\mathrm{C} 22) \cdots \mathrm{C}(29)^{(b)}$	2.884 (8)	
$\mathrm{C}(2) \cdots \mathrm{H}(\mathrm{C} 32)^{(\text {e) }}$	2.907 (7)	
$\mathrm{H}(\mathrm{C} 14) \cdots \mathrm{C}(28)^{(e)}$	2.928 (11)	
$\mathrm{H}(\mathrm{C} 14) \cdots \mathrm{C}(29)^{(e)}$	2.937 (11)	
$\mathrm{H}(\mathrm{C} 14) \cdots \mathrm{C}(35)^{(\text {el }}$	2.955 (12)	
$\mathrm{H}(\mathrm{C} 14) \cdots \mathrm{C}(30)^{(e)}$	2.968 (11)	
$\mathrm{H}(\mathrm{C} 14) \cdots \mathrm{C}(36)^{(e)}$	2.969 (11)	
$\mathrm{H}(\mathrm{C} 14) \cdots \mathrm{C}(27)^{(e)}$	2.971 (12)	
$\mathrm{H}(\mathrm{C} 26) \cdots \mathrm{H}(\mathrm{C} 37)^{(a)}$	2.431 (14)	
Host-guest molecule B		
$\mathrm{S}(1) \cdots \mathrm{H}(\mathrm{C} 48)^{(d)}$	3.031 (5)	3.05
$\mathrm{H}(\mathrm{C} 26) \cdots \mathrm{H}(\mathrm{C} 48)^{(a)}$	2.429 (12)	$2 \cdot 40$
$\mathrm{H}(\mathrm{C} 3) \cdots \mathrm{C}(44)^{(c)}$	2.953 (8)	$2 \cdot 90$
$\mathrm{H}(\mathrm{C} 4) \cdots \mathrm{C}(43)^{(c)}$	3.005 (9)	
$\mathrm{C}(1) \cdots \mathrm{H}(\mathrm{C} 42)^{(h)}$	2.837 (8)	

Symmetry codes: (a) $1+x, y, z$; (b) $x-1, y, z$; (c) $x, 1+y, z$;
(d) $1-x, y, z ;$ (e) $1-x, \frac{1}{2}+y, \frac{3}{2}-z ;(f)-x, \frac{3}{2}+y, \frac{3}{2}-z ;$
(g) $1-x, \frac{3}{2}+y, \frac{3}{2}-z ;(h)-x,-y,-z$.
*Sum of van der Waals radii.
by imposing a centrosymmetric conformation on the host complex which involves significant repulsive interactions (Lipkowski, 1981), which is not observed in the structure reported here.

The study was supported within the PAN-CNR scientific cooperation programme (project 03.10 of PAN).

References

Andreetti, G. D., Bocelli, G. \& Sgarabotto, P. (1972). Cryst. Struct. Commun. 1, 51-54.
Gil, E. R. De \& Kerr, I. S. (1977). J. Appl. Cryst. 10, 315-320.
Guarino, A., Occhiuccl, G., Possagno, E. \& Bassanelli, R. (1977). Spectrochim. Acta, Part A, 33, 199-203.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hartl, H. \& Brüdgam, I. (1980). Acta Cryst. B36, 162165.

Hoppe, W. (1969). Acta Cryst. A25, 67-76.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.

Kemula, W., Lipkowski, J. \& Sybilska, D. (1974). Rocz. Chem. 48, 3-12.
Kerr, I. S. \& Williams, D. J. (1977). Acta Cryst. B33, 3589-3592.
Lipkowski, J. (1981). J. Mol. Struct. 75, 13-28.
Lipkowski, J., Bylina, A., Duszczyk, K., Leśniak, K. \& Sybilska, D. (1974). Chem. Anal. (Warsaw), 19, $1051-$ 1057.

Lipkowski, J., Sgarabotto, P. \& Andreetti, G. D. (1980). Acta Cryst. B36, 51-57.

Lipkowski, J., Suwińska, K., Andreetti, G. D. \& Stadnicka, K. (1981). J. Mol. Struct. 75, 101-112.
Müller, U. (1977). Acta Cryst. B33, 2197-2201.
Schaeffer, W. D., Dorsey, W. S., Skinner, D. A. \& Christian, C. G. (1957). J. Am. Chem. Soc. 79, 5870-5876.
Schomaker, V. \& Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.
Sheldrick, G. M. (1975). SHELX. Program for crystal structure determination. Univ. of Cambridge, England.

Orthorhombic and Monoclinic Allotropes of cis-[$\left.\mathrm{PtCl}_{\mathbf{2}}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$, cis-Dichlorobis(methyldiphenylphosphine)platinum(II): Structure Analyses

By Ho Kin-Chee, George M. McLaughlin, Mary McPartlin* and Glen B. Robertson
Research School of Chemistry, The Australian National University, Canberra, ACT, Australia

(Received 23 August 1980; accepted 26 June 1981)

Abstract

The crystal-structure analysis of two stable allotropes of cis-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]\left(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{Pt}, M_{r}=666 \cdot 44\right)$ is reported. (I) is orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ with $a=10.0271(6), b=14.5578$ (6), $c=$ 17.0528 (8) $\AA, Z=4, V=2489.24 \AA^{3}, D_{m}=1.77$ (2), $D_{c}=1.778 \mathrm{Mg} \mathrm{m}^{-3}, F(000)=1296, \mu(\mathrm{Cu} K \alpha)=$ $14.025 \mathrm{~mm}^{-1}, T=294$ (1) K. (II) is monoclinic, space group $P 2_{1} / c$ with $a=12.8639$ (9), $b=13.6580$ (3), $c=18.9963$ (14) $\AA, \beta=131.312$ (6) ${ }^{\circ}, Z=4, V=$ $2506.93 \AA^{3}, D_{m}=1.76(1), D_{c}=1.766 \mathrm{Mg} \mathrm{m}^{-3}$, $F(000)=1296, \mu(\mathrm{Cu} K \alpha)=13.926 \mathrm{~mm}^{-1}, T=294$ (1) K. Full-matrix least-squares refinements, with fixed H atoms, converged with $R=0.024$ for (I) (2296 reflections) and 0.019 for (II) (3220 reflections). Molecules in both allotropes are essentially cis square planar, with similar small tetrahedral deformations of the coordination spheres. In (II) the PMePh_{2} ligands are disposed less symmetrically than in (I), resulting in inequivalence of the $\mathrm{Cl}-\mathrm{Pt}-\mathrm{P}$ angles [90.77 (4) and 83.43 (4) ${ }^{\circ}$] and of the $\mathrm{Pt}-\mathrm{Cl}$ distances [2.359 (1) and 2.345 (1) \AA]. The $\mathrm{Pt}-\mathrm{P}$ distances are equivalent within experimental error [mean 2.245 (1) \AA]. Corresponding mean bond distances for (I) are $\mathrm{Pt}-\mathrm{P}, 2.249$ (1) and $\mathrm{Pt}-\mathrm{Cl}$, 2.350 (1) Å.

\section*{Introduction}

In the course of attempting to recrystallize trans$\left[\mathrm{PtCl}\left(\mathrm{COCH}_{3}\right)\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ from chlorinated solvents,

^[* Present address: Department of Chemistry, The Polytechnic of North London, Holloway, London N7 8DB, England.]

excellent crystals (I) exhibiting well-defined mmm symmetry were obtained from ethanol/chloroform solution. The discrepancy between the observed density $\left[1.77(2) \mathrm{Mg} \mathrm{m}{ }^{-3}\right.$, measured by flotation in aqueous BaI_{2}] and that calculated for the above formulation ($1.798 \mathrm{Mg} \mathrm{m}^{-3}$) was larger than expected, but consistent with imperfect wetting. Accordingly, the discrepancy was ignored and diffraction data were collected with these crystals. Subsequent solution of the structure showed the product to be cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right.$]. Since the detailed structure of this molecule permits some quantification of the trans influence of the PMePh_{2} ligand (on $\mathrm{Pt}-\mathrm{Cl}$ bond distances) refinement of the structure was continued. Attempts to obtain crystals of the acyl complex were also continued. An apparently successful recrystallization from $\mathrm{C}_{6} \mathrm{H}_{6} / \mathrm{EtOH} / n$-hexane under rigorously dry conditions yielded well-formed crystals (II) with $2 / m$ symmetry. Observed and calculated densities were in excellent agreement (apparently) and, hence, a second set of data was collected on the assumption that this time we had the acyl complex. It was, in fact, a second crystalline modification of cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ and the density agreement was traced to a numerical error. However, despite being derived from a common precursor, trans$\left[\mathrm{PtCl}\left(\mathrm{COCH}_{3}\right)\left(\mathrm{PMePh}_{2}\right)_{2}\right]$, and both having the cis conformation at Pt , molecules in (I) and (II) exhibit distinct conformational differences. Therefore, it seemed worthwhile to refine (II) to convergence also, with a view to investigating the effects of the conformational differences on metal-ligand bond lengths and angles.

[^0]: * Part II: Lipkowski, Suwiñska, Andreetti \& Stadnicka (1981).
 \dagger Preliminary communication: Lipkowski, Andreetti \& Sgarabotto |Acta Cryst. (1978), A34, S145|.
 $\ddagger 4$-MePy $=4$-methylpyridine $\left(\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)=\gamma$-picoline.

[^1]: * See deposition footnote.

